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Abstract

Let a(n) denote the self-circumference of a regular polygon

with n sides. It will be shown that a(n) is monotonically

increasing from 6 to 2w if n is twice an odd number, and mono-

tonically decreasing from 8 to 2w if n is twice an even number.

Calculation of o(n) for the case where n is odd as well as

inequalities for self-circumference of some irregular polygons

are given. Properties of the mixed area of a plane convex body

and its polar dual are used to discuss the self-circumference

of some convex curves.



Introduction

Minkowski distance defined by means of a convex body was

developed by Minkowski [12], and has applications in study of

crystals [20] and differential equations [15]. Minkowski

spaces are simply finite dimensional normed linear spaces. The

articles by Busemann [2] and Petty [13] contain basic concepts

for the study of Minkowskian geometry, as do Chapter 6 of

Benson's book [1] and Chapter 4 of Valentine's book [22] ; these

last two books also contain useful background material from the

theory of convex sets.

In this article, we deal with the perimeter of unit circles

in the Minkowski plane, using the terminology of geometry of

numbers, to give calculations and inequalities for the self-

circumference of unit circles in the Minkowski plane. This

work started with an attempt at specific calculations for the

regular polygons, from which some inequalities grew.

By a plane convex body K we shall mean a compact, convex

subset of the Euclidean plane having a non-empty interior. We

shall take a "unit circle" K for the Minkowski plane to be a

centrally symmetric convex body with its center at the origin

in the Euclidean plane. The Minkowski distance d(x~y) from x

to y is defined by



(1) d(x,y) = de(x,y)/r

where de(x,y) is the Euclidean length from x to y, and r is the

Euclidean radius of K in the direction of the vector y-x. See

Figure 1. We will refer to the points of the Euclidean plane

with this new metric as "the Minkowski plane". The Minkowski

length of a polygon path is obtained by adding the Minkowskian

lengths of the corresponding line segments. The Minkowskian

length of a curve is defined by taking supremum over all

inscribed polygonal paths. The self-circumference of the unit

circle K is the Minkowskian length of K measured with respect

to K. In other words, the length of boundary of K using the

metric induced by K is called the "self-circumference" of K and

is denoted by a(K). Golab [7] was apparently the first to

prove that

(2) 6 < a(K) < 8

Equality is attained on the left if, and only if, K is affine

image of a regular hexagon, and on the right if, and only if, K

is a parallelogram. A proof of the above inequality is given

by Schaffer [16]. His book [17] , Geometry of Spheres in Normed

Spaces, also contains a proof as well as historical background

related to self-circumference. Chakerian and Talley [3]
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establish a number of properties of self-circumference and

raise interesting questions.

Some Definitions

Let K be a plane convex body with the origin as an interior

point. For each angle 9, 0 < 9 < 2r, we let r(K,9) be the

radius of K in direction (cos 0,sin 9), so that the boundary of

K has equation r = r(K.8) in polar coordinates. The distance

from the origin to the supporting line of K with outward normal

(cos 8.sin 9) is denoted by h(K,O). This is the supporting

function of K restricted to the Euclidean unit circle. Since K

is convex, it has a well-defined unique tangent line at all but

at most a countable number of points. We let ds(K,8) represent

the element of Euclidean arclength of the boundary of K at a

point where the unit normal is given by (cos 9,sin 9). Then

the perimeter of K is given by

r27r
(3) L(K) = J h(K,O)dO

while the Euclidean area of K is given by

(4) A(K) = - 2  h(K,9) ds(K,9)
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The polar dual of K, denoted by K*, is another plane convex

body having the origin as an interior point and is defined in

such a way that

(5) h(K*,) ) and r(K*,) 1
r(K,) nh(K,0)

The mixed area A(K 1 ,K 2 ) of two convex sets is defined by

(6) A (K = - 2 h(K 1 ,0)ds(K 2 ,0)(6) A( 9 '2) f 0

It turns out that the mixed area is symmetric in its arguments.

Eggleston [5] contains further properties of mixed areas. The

following result due to Firey [6] will be used: The mixed area

of a plane convex body and its polar dual is at least r.

The unit circle K of a Minkowskian plane is referred to as

the indicatrix. Define the isoperimetrix to be that convex

body T such that

(7) h(TO) =h(K*,0 + r/2)
r(K,0 + r/2) +

(See Petty [13] .) A centrally symmetric set is called a Radon

curve if it coincides with the corresponding isoperimetrix.

Pages 233, 234 of Benson [1] contain further properties of

Radon curves. We now discuss the definition of self-

circumference and give some properties.
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If K is a centrally symmetric plane convex body, centered

at the origin, then, because of (1) and the succeeding

discussion, the self-circumference a(K) is given by

(8) u(K) = f ds(K,O)/r((,O + r/2)

If K is not necessarily centrally symmetric and z is any point

interior to K, then positive and negative self-circumference of

K relative to z are defined by

(9) a+(K,z) = f ds(K,O)/r(K,e + ir/2)

and

(10) 0-(K,z) = f ds(K,O)/r(K,O - r/2)

where the origin of the coordinate system is at z. Both

a+(K,z) and o-(K,z) reduce to a(K) in case K is centrally

symmetric with z as its center. Go-tab [7] conjectured that

a±(K,z) > 6. for all z E K, and min a+(K,z) < 9. The latter
zEK

conjecture was settled by Grunbaum [8]. The proof given in [9]

of the lower bound appears to be in error. The paper of

Sorokin [19] also is apparently in error, so that this question

is still open.
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If K 1 and K2 are plane convex bodies with the origin as an

interior point, then the length of the positively oriented

boundary of K, with respect to K2 is given by

(11) a+(K ,K 2 ) = j ds(K1 ,O)/r(K 2 ,O + r/2)

and the length of the negatively oriented boundary is given by

(12) a-(K11.h2) = f ds(KlO)/r(K 2 ,O - r/2)

Schaffer [18] and independently later, Thompson [21]. proved

that for a centrally symmetric set a+(K) = a-(K*) and u-(K) =

a+(K*). More generally Chakerian [4] used the concept of mixed

areas to prove that

(13) a+(Kll<2) = o-(K2*,K1*) and a-(KlK2) = u+(g2*,l 1* )

Holmes and Thompson [11] give a definition of area and content

in Minkowski spaces which implies that the surface of the unit

ball and that of the dual ball are the same.

Polygons

The following theorem gives inequalities for the self-

circumference of regular polygons with an even number of sides.
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We shall later discuss the calculation of self-circumference

for regular polygons with an odd number of sides and for some

irregular polygons.

Theorem 1. Let a(n) denote the self-circumference of an affine

image of a regular polygon with n sides. Then u(n) is mono-

tonically in-reasing from 6 to 2r if n is twice an odd number,

and monotonically decreasing from 8 to 2r if n is twice an even

number. Furthermore, 6 and 8 are the only two rational values

assumed by these families of polygons.

Proof. The affine invariance of self-circumference implies

that we only need to consider regular polygons. Assume n is

twice an odd number. Inscribe the polygon in a circle. There

are an odd number of sides on each side of a diameter. Thus

one of the sides is parallel to a diameter. By simple

trigonometry it can be shown that the Minkowskian length of a

side is equal to 2 sin r/n. Thus

(14) u(n) = 2n sin r/n

Nionotonicity of sin X and the fact that sin N < 1 forx x

0 < x < r/2 implies that a(n) < 2r. Since sin w/n assumes

rational values only for n = 2 and n = 6 (see P6lya and Szeg6

[14]. page 144. problems 197.1 and 197.5). it follows that 6 is
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the only rational value attained. By using a diameter

perpendicular to two parallel sides it can be shown that

(15) o(n) = 2n tan r/n

for the case when n is twice an even number. Monotonicity of

tan x and the fact that tan r/n is only rational for n = 4
x

implies the second case. U

The self-circumference of a regular n-gon, where n is odd.

is given by

(16) u(n) = (2ntanl/n)(cos7T/n)

It is interesting to look for polygons with self-

circumference equal to 7. The self-circumference of the

polygon in Figure 2 is given by

(17) a(K() = 8(1 + tan 2 9/1 + tan 0)

This is a convex function of 0 symmetric with respect to

0 = r/8, attaining its minimum at 0 = r/8, corresponding to a

regular octagon. We can choose a value of 0 such that

a(K) = 7. Similar formulas can be derived for polygons

obtained by truncating the corners of regular polygons.

8



Chakerian and Talley [3] discuss the self-circumference q±(K)

at the centroid and give some estimates and conjectures. For

example they make the following conjecture.

Conjecture. The minimum value of q+(Q), as Q ranges over all

convex quadrilaterals, is equal to the minimum value of

(18) a + (-l(4) + 2 6 , 2 < a < 3,
(a-) ( -i )_ (a -4a+6)

which is approximately 7.8201 and is attained for a = a,

2.6317.

They use numerical techniques and their data indicate that

the minimum value q+(P), as P ranges over all convex pentagons,

is no more than 6.835. They also raise the following question.

Question. What is the least upper bound of q+(K), as K ranges

over all plane convex bodies?

They give an example of a trapezoid to show that a+(K,z)

and a-(K,z) do not assume their minimum at the same point, thus

answering a question posed by Hammer [10]. The following two

theorems give inequalities for self-circumference of a

quadrangle and a trapezoid.

Theorem 2. The self-circumference a+(Q,z) of a quadrilateral

with respect to the point of intersection of the diagonals is

9



at least 8, with equality if and only if the quadrilateral is a

parallelogram.

Proof. Consider a quadrilateral Q with vertices A, B, C, D

(see Figure 3). Let z be The piont of intersection of the

diagonals. Let a, b, c, d be the Euclidean lengths from z to

A, B, C and D respectively. Then by using similar triangles we

obtain

(19) aa+c + b+d + + b+d
(1)c d a b

Thus

(20) o+( ,z) 4 + a + c + b + d > 8

where the last inequality follows from the arithmetic-geometric

mean inequality. Equality is attained if and only if a = c,

b = d, which implies Q is a parallelgram. U

Theorem 3. The self-circumference a+(Q,O) of a trapezoid Q

with respect to the midpoint of one of the diagonals is at

least 8, with equality if and only if Q is a parallelogram.

Proof. Consider a trapezoid Q with vertices A, B, C and D.

See Figure 4. In the figure Glu is parallel to ;D, E is

10



parallel to AB, OF is parallel to Ed, and OG is parallel to CD.

By using similar triangles we obtain

(21) -+(Q,0) +B + Q+ DA
OE OF+ OG +O

= _ + __+ 4 = 2(A + CD) + 4
OE GU+ - CD AB

where we have used the fact that CD = 20E, AB = 26U, B =20

and AD = 2GH. The arithmetic-geometric mean inequality and

equation (21) imply a+(Q,O) 1 8 with equality if and only if CD

AB, which gives a parallelogram. M

Calculation of self-circumference of some simple polygons

is interesting. For example, for the pentagon P in Figure 5.

a+(P,z) = 7. The self-circumference a+(K,z) for the polygons

in Figures 6, 7, 8, 9 and 10 assumes the values 6, 7, 8, 9 and

10 respectively. By moving z along the altitude of the

triangle in Figure 10, other values of a+(K,z) will be assumed,

approaching infinity as z gets close to the vertex. The self-

circumference of the family of hexagons obtained by truncation

of an equilateral triangle at the corners is given by

(22) a(K) = 9 _ 3t 0 1 t 5 2

The value a(K,z) = 9 is obtained when t = 0 and the value

a(K,z) = 6 when t = 2. The self-circumference of the family of

11



polygons in Figure 12 varies continuously from 6 to 8. In

particular, for equation (22) and Figure 12, hexagons can be

found with self-circumferences equal to 2r. Thus we obtain

Minkowski unit circles with self-circumferences equal to that

of the Euclidean unit circle.

Curves

In the following we use properties of mixed areas of a

plane convex body and its polar dual to discuss self-

circumference of some convex curves. The following theorem

shows that the self-circumfernce of a pl'ane convex body with

four-fold symmetry is at least 2r.

Theorem 4. Let K be a centrally symmetric plane convex body

centered at the origin. Assume r(K,O) is an equation of the

boundary of K in polar coordinates. Assume r(K,O) = r(K,O+E),

0 < 0 < 2r. That is, K has four-fold symmetry. Then the self-

circumference satisfies a(I() > 2r.

Proof. Using the definition given in (8), and four-fold

symmetry, we obtain

(23) a(K) = J ds(K,O)/r(K,9 + 7/2)

=f ds(K,O)/r(K,O)

12



By the property of polar dual given in (5) and the property of

mixed areas given in (6), it follows that

(24) 0(K)= f ds(K,O)/r((,O) = f h(K*,O)ds(KO)

= 2A(K*,K).

Firey's result [6] states that the mixed area of a plane convex

body and its polar dual is at least r. By using this and

equation (24), it follows that a(K) > 2r. M

Regular polygons with the number of sides equal to twice an

even number have four-fold symmetry. Thus the result in

Theorem 1 is a special case of the above theorem. The unit

circles of 1 p spaces satisfy four-fold symmetry and thus their

self-circumference is at least 2r, with the value of 2r for the

case p = 2.

Recall that the isoperimetrix T was defined by (7). The

following theorem gives the Minkowskian length of a plane

convex body with respect to the isoperimetrix.

Theorem 5. Let K be a plane convex body. Assume T is the

isoperimetrix, that is, the polar dual rotated 90 degrees.

Then a+(KT) = 2A(K), where A(K) is the Euclidean area.

13



Proof. By the definition given in (11) we obtain

u+(K,T) = f ds(K,O)/r(T,9 + 7r/2)

By the definition of isoperimetrix, r(T,O + r/2) = r(K*,O).

Thus,

(25) t+(K,T) = f ds(K,O)/r(K*,O) = f h(K,9)ds(K,O) = 2A(K)

where we have used (4) and (5) giving the Euclidean area and

the property of polar dual. D

If K is a Radon curve, then it coincides with its isoperi-

metrix. Thus the self-circumference of a Radon curve is equal

to twice its Euclidean area. We conclude by proving the

following theorem, concerning the length of a Euclidean unit

circle with respect to a convex curve K.

Theorem 6. Let K be a plane convex body. Assume B is the

Euclidean unit circle. Then the length of B with respect to K

is equal to the Euclidean length of the polar dual of K. That

is, o,+(B,K) = L(K*).

Proof. By the result of Chakerian given in (13) we obtain

(26) o-+(BK) = o-(K*,B*) = u-(K*,B)

14



Assuming that the polar dual of K is calculated at the center

of the Euclidean unit circle B, it follows that -+(B,K) =

L(K*) . M

In the particular case where K is a square with vertices at

(±1,0), (0,±1), the Minkowski distance is the same as the so-

called Taxicab metric. The polar dual is a square with sides

parallel to the axis. See Figure 13. Thus the length of a

Euclidean unit circle in Taxicab metric is the same as the

Euclidean length of the circumscribed square which is 8, and

thus we have finally squared the circle.
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